Some Extensions of Witt’s Theorem
نویسنده
چکیده
We extend Witt’s theorem to several kinds of simultaneous isometries of subspaces. We determine sufficient and necessary conditions for the extension of an isometry of subspaces φ : E → E′ to an isometry φV : V → V ′ that also sends a given subspace to another, or a given self-dual flag to another, or a Witt’s decomposition to another and a special self-dual flag to another. We also determine sufficient and necessary conditions for the isometry of generic flags or the simultaneous isometry of (subspace, self-dual flag) pairs.
منابع مشابه
Some extensions of Darbo's theorem and solutions of integral equations of Hammerstein type
In this brief note, using the technique of measures of noncompactness, we give some extensions of Darbo fixed point theorem. Also we prove an existence result for a quadratic integral equation of Hammerstein type on an unbounded interval in two variables which includes several classes of nonlinear integral equations of Hammerstein type. Furthermore, an example is presented to show the effic...
متن کاملExtensions of Some Fixed Point Theorems for Weak-Contraction Mappings in Partially Ordered Modular Metric Spaces
The purpose of this paper is to establish fixed point results for a single mapping in a partially ordered modular metric space, and to prove a common fixed point theorem for two self-maps satisfying some weak contractive inequalities.
متن کاملOn the compactness property of extensions of first-order G"{o}del logic
We study three kinds of compactness in some variants of G"{o}del logic: compactness,entailment compactness, and approximate entailment compactness.For countable first-order underlying language we use the Henkinconstruction to prove the compactness property of extensions offirst-order g logic enriched by nullary connective or the Baaz'sprojection connective. In the case of uncountable first-orde...
متن کاملNoncrossed Products in Witt’s Theorem
Since Amitsur’s discovery of noncrossed product division algebras more than 35 years ago, their existence over more familiar fields has been an object of investigation. Brussel’s work was a culmination of this effort, exhibiting noncrossed products over the rational function field k(t) and the Laurent series field k((t)) over any global field k — the smallest possible centers of noncrossed prod...
متن کاملQuadratic Forms Chapter I: Witt’s Theory
1. Four equivalent definitions of a quadratic form 2 2. Action of Mn(K) on n-ary quadratic forms 4 3. The category of quadratic spaces 7 4. Orthogonality in quadratic spaces 9 5. Diagonalizability of Quadratic Forms 11 6. Isotropic and hyperbolic spaces 13 7. Witt’s theorems: statements and consequences 16 7.1. The Chain Equivalence Theorem 18 8. Orthogonal Groups 19 8.1. The orthogonal group o...
متن کامل